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Objectives

Incomplete or sparse information on types of data such as geolo gic or formation
characteristics introduces a high level of risk for oil exploration and development
projects. “Expert” systems developed and used in several disciplines and industries,
including medical diagnostics, have demonstrated beneficial results. A state-of-the-art
exploration “expert” tool, relying on a computerized data base and computer maps
generated by neural networks, is proposed for development through the use of “fuzzy”
logic, a relatively new mathematical treatment of imprecise or non-explicit parameters
and values. Oil prospecting risk can be reduced with the use of a properly developed and
validated “Fuzzy Expert Exploration (FEE) Tool.”

This tool will be beneficial in many regions of the US, enabling risk reduction in
oil and gas prospecting and decreased prospecting and development costs, In the 1998-
1999 oil industry environment, many smaller exploration companies lack the resources of
a pool of expert exploration personnel. Downsizing, low oil prices, and scarcity of
exploration funds have also affected larger companies, and will, with time, affect the end
users of oil industry products in the US as reserves are depleted. The proposed expert
exploration tool will benefit a diverse group in the US, leading to a more efficient use of
scarce funds and lower product prices for consumers.

This first of twenty quarterly reports contains an account of the progress,
problems encountered, plans for the next quarter, and an assessment of the prospects for

future progress.
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Summary of Technical Progress
To ensure data-driven research, the Brushy Canyon interval of the Delaware sands

(Fig. 1) in the Delaware Basin was selected as the focus of the expert exploration tool

development,
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Fig. 1. Delaware Basin generalized stratigraphic column.
The Delaware Basin is a region where oil and gas exploration and development
has continued through downturns in oil prices. Thus, the research will be driven by a
problem with real field utility. Progress was made on the three major tasks required to

meet the objective.



* Data gathering consisting of production history, wireline logs, gravity and
aeromagnetic data, and seismic information was initiated and will continue
throughout the project.

* Four expert system shells were found on the WWW that are candidates for
developing the FEE Tool. Computational intelligence work commenced with the
evaluation of a number of neural network architectures to evaluate Brushy Canyon
logs. A first look at applying fuzzy logic to log evaluation was completed.

* Technology transfer consisted of introducing the project on the World Wide Web and

preparation of three technical papers.

Data Assimilation

Production history, wireline log data, scout tickets, acromagnetic, gravity, and
seismic information are the initial components of the exploration database. The problem
of compiling the data into a form suitable for searching by the expert system was
addressed. Two database engines were considered. Oracle Corporation’s Qracle is
currently the most powerful of the commercial database engines that were reviewed.
Microsoft offers two phases to developing a database engine. The first is the low-level
product Access, followed by the more powerful SOL Server.

Two types of data are being compiled. Well data such as production history, oil
shows, and interpreted log information are considered as single-point information.
Spatially continuous information such as seismic, asromagnetic, gravity, and regional

structure maps is the second type of data, which is stored using a relational database.



Access will be the initial database engine. The software is inexpensive. relatively
user-friendly, and is suitable for perhaps a 200-well database. Development of the
prototype expert exploration tool will use Access, and will be accessible to consortium
members via the Internet. As the project storage requirements grow, the Access tables
will be transferred to SOL Server, recognizing that the entity relationships will have to be
rewritten. Oracle does have a factor-of-ten speed advantage over Access, but the cost is
also tenfold that of Access, and is not warranted at this stage of the research program.
The PTTC Southwest Region is using a similar strategy to develop an internet-accessible
production database for all wells in New Mexico. It is anticipated that the PTTC project
will be completed in 2002, and the FEE Tool will link to the faster PTTC database engine

for production records.

Wireline Log Data

Regional cross-sections at key places in the basin were used to select the initial
100 wells for inclusion in the database. The top and bottom of the Brushy Canyon
interval in key wells were identified for the regional cross sections. The geologically
significant markers are:
e Top of Brushy Canyon
¢« Top of Lower Brushy Canyon
¢ Base of Brushy Canyon

The markers have been used by others' and are relatively easy to recognize and

correlate. The markers are the templates for other wells in the basin. These data will be



used in construction of structure maps, isopach maps, and are necessary for acquisition of
porosity and other reservoir data as well as for source rock calibration/assessment.

Quality control of this critical part of the data acquisition process is assured by
having all picks cross-checked by the co-PI who is a geologist. For consistency and
quality control no more than two geologists will correlate the tops; additional Interpreters
could result in the confusion commonly encountered when reviewing scout ticket
information.

The picks on four to six wells per township are being resolved and recorded. This
well density is sufficient for the initial structure and isopach maps. Improved well density
will result when the project goal of one well per section in the producing fields (about
500 wells) is reached. A photocopied record of the interval is being maintained for

digitizing.

Production Data
The past seven years of production history from 2092 Delaware formation wells
in 184 fields was ported to Access for querying from a 1.1 gigabit database with 330,000

entries. Cumulative production from the Delaware formation vs. time is shown in Fig. 2.
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Fig. 2. Delaware zone production history.

Seismic Information

The commonly held idea that 3D seismic technology had displaced the need for
2D surveys was dispelled when attempts were made to induce owners of old 2D seismic
lines to place their surveys in the public domain. The 2D lines shot by Western
Geophysical and Permian Exploration Corporation are shown in Fig. 3, which includes

Delaware zone producing fields.
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Fig. 3. 2D Seismic Lines collected by Western Geophysical and Permian
Exploration with locations of Delaware zone producing fields.

An owner of a large number of 2D lines in the New Mexico Permian Basin stated
that current 2D seismic license fees amount to $1,000,000 per year. Nevertheless, two
operators have ﬂxpressed a willingness to provide 2D information sufficient to establish
regional lines through the New Mexico Delaware Basin. Additionally, Strata Production
Company is providing the results of the Nash Draw Brushy Canyon interval 3D-seismic

attribute analyses performed earlier by members of this research group.

Gravity Data
Gravity surveying measures the average density of the earth below each

measurement, Gravity data was acquired from the National Geophysical Data Center in



Denver and mapped as shown in Fig. 4. Anomalies in the distribution of these points

may correlate with Delaware fields.
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Fig. 4. Distribution of gravity anomalies across the Delaware Basin with
respect to Nash Field.
The Bouguer gravity anomaly can be understood through a simple explanation on
a global scale. The Bouguer anomalies around the world for sea level are approximately
equal to zero. In regions of high elevations the Bouguer anomalics are negative, while
for ocean regions the anomalies are positive. These large-scale effects are due to density
variations in the crust, indicating higher density material beneath the oceans and lower
density material in areas of elevated land. This effect is well demonstrated in the gravity

map from southeastern New Mexico. The Central basin platform is an elevation high for



the region. It also has a less negative Bouguer anomaly for the region as well. This
indicates an area of higher density material within an area of relatively lower density rock
material. Therefore, the Bouguer anomalies tend to reflect variations within basement

structures as well as imply more subtle trends within the overlying sedimentary structure.

Aeromagnetic Data

Researchers at the NASA-funded Pan American Center for Earth and Environmental
Studies (University of Texas at El Paso), headed by Dr. Randy Keller, recently compiled
and merged data sets from west Texas and southeastern New Mexico into an
aeromagnetic database for the region (Fig. 5). The data was obtained from several

aeromagnetic surveys flown over these areas during the 1950s and 60s.
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Fig. 5. Merged aeromagnetic surveys showing location of Nash Draw Unit.
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The magnetic data included in the FEE Tool was collected through an airborne
survey flown at a constant elevation of 1000 feet with flight lines spaced one mile apart,
This profiled line data was then gridded into equally spaced data points of 0.296 miles
longitude and 0.346 miles latitude, An airborne magnetic survey provides data that is
“smoother” than data collected on the ground. The airborne survey is similar to the
upward continuation modeling problem, which acts like a low pass filter taking out the
high frequency components of the signal, i.e. surface effects. Because of the great depths
to basement, known from drilling, airborne magnetic data is the preferred data type to use
for this investigation. The airborne magnetometer used to collect this data is known (o
have collected data to an accuracy of £2.0 gamma. The applied diurnal correction, loop-
based method allowed for a reliability of the reading within the same order of magnitude
as the :1:::{:1_11'51431.'.1

Aeromagnetic data is generally used to determine the depth to and structure of the
basement. "Basement" is used here to define the local igneous intrusive structure
responsible for measured signal. Our goal is to process the acromagnetic data further to
isolate the effects associated with the Delaware Mountain group. This processing will
include band-pass filtering to target the Delaware Mountain group source depth and
calculation of directional derivatives to indicate possible trends related to fault sets within

the Delaware Mountain group.
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Computational Intelligence
Expert System Shell

Expert system shells have been developed to emulate human expertise. The C
Language Integrated Production System (CLIPS) from NASA is briefly compared to
three other system shells (shown in Table I). The choices are to develop an in-house
system based on CLIPS such as other vendors have created, or to begin with one of the

ather systems.

Table I
Expert System Shells
System Vendor Pro Con
CLIPS NASA Free code, well No fuzzy logic or
documented, internet interface.
numerous examples.
Fuzzy CLIPS | IIT, National Research | Incorporates fuzzy Not commercial,
Council of Canada logic incomplete
documentation, no
internet interface.
Clips/R2 Production Systems Fastest algorithm No fuzzy logic or
Technology internet interface
ECLIPS Haley Enterprise, Inc. | Fully commercial No fuzzy logic
application with
internet interface.

Log Interpretation

Several concepts based on forward or inverse modeling have been applied to log
interpretation. Traditional log analysis is considered an example of forward modeling.
New adaptations to the forward modeling method include tuning conventional wireline
logs with core information to estimate thin bed l'BSiST.h-'it}fJ and resistivity modeling.”

This project includes an inverse method based on training a neural network with

core information to predict porosity, water saturation and a direct estimate of oil



saturation. A new computational intelligence method based on fuzzy analysis is being
investigated. This innovative approach focuses the initial scoping effort on lithology
identification.

Oil shows are perhaps the most important factor when prospecting for Delaware
zone oil. Historically, mud logs have provided the oil show information used to complete
intervals in the Delaware sands, Mud log information is notoriously ambi guous, resulting
in numerous non-commercial Delaware completions in good porosity zones. Or
conversely, commercial oil zones are overlooked because the fine grained, thin beds are
determined to be wet by conventional log analysis. A new log analysis technigue’
incorporating information from core analyses has greatly reduced the risk of depending
solely on mud logs. The new interpretation method relies on porosity and oil saturation
information from core analysis. Public information concerning the majority of the wells
drilled through the Delaware sands does not include core analyses. There is a need for a
direct estimate of oil saturation from the public domain log information.

Neural Network Loe Interpretation

Work by Schlumberger’ thirty years ago demonstrated the relationship between
neutron and formation density logs and oil saturation. The neutron log porosity, @y is
related to hydrocarbon saturation in the flushed zone, S, through:

S — D),
rh _- -:I:[ ]_E]
where o is the hydrogen index of hydrocarbons, B is the hydrogen index of the mud
filtrate, @ is the real porosity, and S, is the residual hydrocarbon saturation. The

hydrogen index is dependent on the oil gravity.



The residual hydrocarbon saturation is related to the density log porosity, ©p,
through:
@ (p.—p, )/
e /W070)+Cp, ~C_p.
C"I-'loﬂl _Chpa

where o is the density of the matrix, ma, or mud filtrate, mf. The Compton effect is C
which is about 1.0 except in the case of hydrogen, h, where it is about 2.0 and @ is the
real porosity. Thus, there is a physical basis to determine oil shows from log-only
information.

A dataset consisting of a full suite of logs and whole core data through a 200 ft.
interval of the Brushy Canyon zone provides the information required to correlate
measured core data with log measurements.  The following procedure details the
correlating method.

A suite of 17 wells from the Nash Draw field in the Permian Basin was obtained
for correlation of wireline log data with core data. One well, Nash Draw #23. had full
core data including permeability (Kg;), porosity (@), grain density (GD), water saturation
(Sw), oil saturation (S,) and fluorescence while the other wells within the field had core
plug measurements with these same parameters. All of the wells had wireline logs that
included caliper, DPHI, DRHO, GR, LLD, LLS, MSFL, NPHI, NPOR, PEF, RHOB, SP
and TNPH.

The purpose of this study is to use the neural network program to correlate the
wireline log data in Nash Draw #23 with the corresponding full core measurements. Once
this is accomplished the neural network will be used to make predictions of core

parameters such as @, 8, and S, using the wireline log data from the other 16 wells. Each



of these wells also has core plug measurements that will provide some measure of the
neural network’s ability to make reasonable predictions. If this procedure is successful it
will be used to make predictions on approximately 500 wells in the initial cxpert system
database.

A fuzzy ranking program was used on the wireline log data before attempting any
correlations with the neural network. This procedure quickly ranks each of the log
variables according to their likelihood of correlating with core parameters such as @, S,
Sw, etc. The fuzzy ranking output is analogous to a correlation coefficient: the higher the
ranking is (0.5, 0.6), the greater is the probability that a significant correlation will be
found between the two variables.

Before running the fuzzy ranking program, each of the input and output variables

is normalized between 0 and 1 using the relationship:

f‘- _X— Xﬂ'lll'l
A max— X min

where the maximum and minimum values are obtained for each variable. Any number of
input variables may be used, in this case wireline log parameters, to rank against one
output variable such as core @, S, S, etc. The end result is a list of variahles with
coefficients that are a measure of the likelihood of a correlation between it and the output
variable, as shown in Table 1.

Input and output data for the neural network program are normalized between 0
and 1, in the same fashion as for the fuzzy ranking. The maximum and minimum values
for all the wells in the field are used in each case, instead of the local maximum and

minimum for a single well. These were determined by finding the maximum and



minimum values for each parameter for all the wells in the field, then adding 1o to the
minimum or subtracting one standard deviation (1o) from the maximum.

The performance of the neural network was evaluated by exclusion testing in
which a subset of data points was extracted from the training set to use for testing. For the
Nash Draw set one out of every five data points was extracted for testing, resulting in 172
samples for training and 42 for testing. Once the neural network is trained to the desired
correlation coefficient and is validated by testing, it will be used to make predictions of
core parameters on wells for which only wireline logs exist.

With the data sets properly formatted the neural network was then trained using
the training inputs (DPHI, LLD and LLS) to correlate with the desired training output
(core @, Sw). The linear correlation coefficient is used as the measure of the closeness of
correlation between the actual values and neural network determined training values.
When the training is successful the ability of the neural network to make predictions is
examined using the testing data set. The measure of how well the neural network can
correlate the same input testing variables against the output testing variables is also
determined by the linear correlation coefficient.

The training and testing process involves trying many different neural network
architectures o determine which produces the best results. The example shown below in
Fig. 6 shows a sample 4-4-2-1 architecture in which there are four input variables (A1-4)
and one output variable (core @). The number of nodes in the first layer is equal to the
number of input variables (DPHI, LLD, LLD and PEF) and there is only one output

variable (). The number of nodes in the hidden layers (there can be one, two, or three



hidden layers) can be altered to achieve the best correlations. This results in several
hundred or thousand architectures that may be tested,

Initially input variables were selected from fuzzy ranking results to predict core
porosity. Other combinations of input variables were later tried to make predictions of
core (D, 5, S, and ©*S, (Table II). Because the neural network can overtrain, it is trained
to several different correlation coefficients to determine which produces the highest

testing correlation coefficient.

Al

Architecture AT

(4-4-2-1) . Core
A3
Ad

Fig. 6. A 4-4-2-1 neural network architecture. This architecture is four-layered
with one input layer, two hidden layers and one output layer.

Results of the fuzzy ranking show an overall weak correlation between wireline
log data and core data, with relatively low ranking coefficients. Among the inputs tested,
DPHI, LLD, LLS, PEF and TNPH ranked highest with coefficients above 0.3.
Coefficients were identical for core ®, 5,, Sy, Ky, and ®*5,, indicating a poor correlation
between log and core data. These results were used as a guide for selecting input

variables for initial neural network training.

17




Table I. Results of fuzzy ranking. Data set is from Nash Draw #23 well with full

core.

Input | Qutput Output Output | Output Output
Wire-line Core @ Core S, Core Sy Core A Core ®*S,
Caliper 29 25 25 25 25

DPHI 33 | .33 33 A3 33

DRHO [ .17 17 17 17 17 ]
GR 20 20 .20 .20 .20

LLD 36 .36 36 .36 A6

LLD 36 36 36 .36 36

MSFL | .22 22 22 22 22

Log LLD | .27 27 27 27 27

Log LLS 28 28 28 28 28

Log MSFL | .21 21 21 21 2]

NPHI 26 .26 | .26 26 26

NPOR 25 .25 25 25 25 rl
PEF 33 R3S 33 33 .33

RHOB 33 33 33 33 wE

SP 41 41 41 41 [ .41

TNPH g2 2 7 32 A

Before beginning the neural network analysis conventional linear correlation

cross-plots were generated in an Excel spreadsheet. Core porosity showed a good

correlation with core permeability (0.84 cc), DPHI (0.74 cc), LLD {0.65 cc) and

SQRT((NPHI*2+DPHI*2)/2) (0.60 cc); poorer correlations were found with core Sw

(0.45 cc) and NPHI (0.35 cc) as summarized in Table II. A good correlation was found

between §, and Sy (0.69 cc) and between Sw and LLD (0.53); correlations between S,

and SQRT ((NPHI"2+DPHI*2)/2) (0.0 cc), and Sw with DPHI (0.39 cc) were not as

good, Table IL. Reasonably good correlations also exist between LLD and core

permeability (0.51 cc) and DPHI (0.68 cc), Table II.



lable I. Table of conventional correlation coefficients from cross plots.
Correlation coefficients listed represent best fit line.
Variables Correlation Coefficients, % |
Core © vs. Core Perm. 0.84 B
Core @ vs. DPHI 0.74
LLD vs. Core @ ' .65
SQRT(D) vs. Core @ 0.60
Swvs. Core @ 0.45
Core @ vs. NPHI 035
Sw vs. S, | 0.69 H
.S“' vs LLD .23
S, vs. SQRT(d) No Correlation
Sw vs. DPHI 0.39
| LLD vs. Core Perm. 0.51
| LLD vs. DPHI 0.68

SQRT(®) is the same as SQRT((NPHI"2)+(DPHI"2))

Results of the neural network training are compiled in Table III. Good
correlations between log measurements and core porosity were consistently obtained by
several different methods. The best correlations (training to 0.70, testing to 0.78) were
found using adjusted data sets where resistivity values >100 ohm were excluded from
training and testing (left 145 training points, 36 test points). Most of the excluded values
exceeded 1000 ohm, whereas the retained values averaged less than 20 ohm. However,
due to the large number of wells that will be tested in this study, this method of selective
exclusion of data points is not reasonable.

Another variation was obtained by deleting every fourth point for exclusion
testing (left 161 training points and 53 test points) instead of every fifth point (left 172
training points and 42 test). This procedure did not change the results noticeably and
higher correlations were obtained by parsing every fifth point.

The best correlations with core porosity that included all data points were
obtained using 11 inputs including Cal, DPHI, GR, LLD, LLS, MSFL, NFHI, NPOR,

PEF, RHOB and SP (trained to 0.84 and tested to 0.77). The inputs DPHI and RHOB are



basically the same with RHOB being calculated from DPHL NPHI and NPOR are
virtually the same as well, although they have slightly different fuzzy ranking values.
Therefore, complications could occur with these results due to the extra weight placed on
the two duplicated inputs, Other input combinations that had no duplication of input
variables showed slightly lower results with the best training cc’s at about 0.78-0.8 and
testing cc’s of 0.72-0.74. The neural network correlations are summarized in Table III.

Although the neural network provides reasonably good correlations between log
medsurements and core S,, (training and lesting to 0.56 cc), visual examination of the
output data shows otherwise as seen in Fig. 7.

Outlier values cause an apparent correlation. An attempt to correct this by using
resistivity values excluding outliers did not improve the correlation.

Poor correlations were also obtained between log measurements and core So by
itself (training to 0.56 and testing to 0.27 cc), Table IIL, Changing the input variables did
not significantly change these results and in some cases no correlations were found. The
correlation was improved by multiplying core @ by core So (training to 0.62 and testing

0.32 c¢), Table I,
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Fig. 7. No correlation with visual examination.



Table IT1. Nash Draw neural network correlations. The neural net program calculates ce as
the best-fit line.

Input variables Qutput variable | Best Architecture | Tro/tst cc. %

| *DPHL, PEF, 5P Core @ 3-4-2-1 0.78/0.73
*Log LLD, Log LLS, PEF, SORT(d) Core (& 4-6-2-1 0.78/0.68
*Log LLD, Log LLS. SQRT(®) | Core 3-6-6-1 | 0.71/0.66 -
*DPHI, Log LLD, Log LLS, NPHI | Core @ 4-4-3-1 | 0.78/0.74
*DPHL, Lop LLD, Log LIS, NPOR, PEF Core D 5-5-4-1 0.80/0.74
*DPHI, Log LLD, Log LLS, NPOR, PEF, GR Core ¢ 6-7-2-1 0.80/0.72
*DPHIL LLD, LLS, PEF, 5P Core @ 5-6-3-1 0.78/0.73
*DPHI, Log LLD, Log LLS, PEF Core @ 4.4-3-1 0.78/0.73
*PHI, Log LLD, Log LLS Core 3-3-2-1 0.78/0.74
*=(al, DPHI, GE, LLD, LLS, MSFL, NPHL | Core @ 11-6-5-1 0.84/0.76
NPOR, PEF, RHOB, SF
;’g?—‘l S?*PHL GR, LLD, LLS, MSFL, NPOR. | Core b 0-3-3-1 0.75/0.74
*(Cal, DPHI, GR, LLD, LLS, MSFL, NPOR. | Care @ 10-4-3-1 0.81/0.74
NPHI, PEF, SF
++DPHI, LLD, LLS, PEF, SF Core @ 5-5-5-1 0.76/0.71
**DPHI, LLD, LLS Core @ 3-6-3-1 0.78/0.69
#+*+DPHI, Log LLD, Log LLS Core @ 3-6-3-1 0.67/0.71
***DPHI, Log LLD, Log LLS, NPHI, PEF Care @ 5-5-5-5-1 0.70/0.78

**4DPHI, Log LLD, Log LLS, NPHI PEF, GR Core (b 6-5-2-1 0800077
+**[PHI, Loz LLD, Log LLS, NPOR, PEF Core @ 5-6-2-1 0.70/0.76
¥**DPHI. NFOR, PEF Core @ 3-4-3-1 0.68/0.78 -
+*++[PHI, NPHI, PEF Core @ 3-7-4-] 0.69/0.74
*#**¥(Cal, DPHL, GR, Log LLD, Log LLS, Log | Core @ 10-5-3-1 0.70/0.74
MSFL., NPHI, NPOR. PEF. SP
*[DPHI, PEF, SP Core S, 3-7-7-1 0.54/0.3
*DPHL LD, LIS, PEF, 5P Core S. 5-6-3-1 0.60/0.27
*GR, LLD, PEF, SP Core 5. 4-5-4-4-1 0.37/0.55
*GR, LLS, PEF, SF Core S. 4-4.4-1 0.57/0.54
*LLD, PEF, 5P Core S, 3-3-3-1 0.57/0.54
*(3R, Log LLD, PEF, SP Core 8. 4-5-3-1 0.57/0.53
*GR, LLD, PEF, 5P Core S. Mo Correlation No Correlation
*Cal, DPHI, GR, LLD, LLS, MSFL, NPOR, | Core 5, 10-6-2-1 :57/0.52
NPHI, FEF, SF
*Log LLD, Log LLS, PEF, SQORT(d) Core 8, 4-4-3-1 0.47/0.51
*DPHI, LLD, LLS, PEF, 5P Core 5, No Correlation No Correlation
*DPHI, LL.D, PEF Core 5, No Correlation No Correlation
*GR, LLD, PEF, SP Core 8, Mo Correlation No Correlation
*Cal, DPHI, GR, LLD, LLS, MSFL, NPOR, | Core 5, No Carrelation No Correlation
NFPHI, PEF, SP

*Log LLD, Log LLS, PEF, SQORT(d) | Core 5,0 4-6-3-1 0.65/0.42
;!%%]Iri, %EI_E-_.IISP('_;R. LLD, LS, MSFL, NPOR, [ Core 5,%D 10-3-2-1 0.61/0.51

*Used 172 training points 42 test points (pulled every 5 for testing).
**Used 161 training points, 53 test points (pulled every 4 for testing).
#*#*[Jsed 143 training points, 36 test points (pulled every 5 for testing, excluded all LLD,

LLS and MSFL <100 ohm).

SQRT (@) = SQRT (NPHI*2+DPHI"2)/2)




Fuzzy Rule Log Interpretation

Wireline logs are widely used by subsurface geologists in exploration, and they
provide a vital source of information in prospect risk assessment. Many different types
of logs are in use today. Log curves may be interpreted directly by human experts, and
software tools based on different decision algorithms have been developed to assist in the
task. Log interpretation, however, remains a complicated and labor-intensive task. As a
beginning part of our project to develop a system for risk assessment, we will investigate
an advanced technique for log interpretation to fully exploit the available log data in the
Delaware Basin.

In this study, we have developed a fuzzy logic-based algorithm to interpret log
curves. Since there is almost always uncertainty, ambiguity, even inconsistency in the
information inferred from log curves, fuzzy logic presents itself as a basis for developing
better log interpretation methods. There are several reasons for this:

A. fuzzy systems have proved to be effective in many applications characterized by
informational uncertainty™™;

B. neural network-based methods in log interpretation have achieved some degree of
success, and equally powerful fuzzy systems can be built, in theory, without the need
of network training{"g'g:

C. afuzzy logic-based interpretation system is much more adaptable and less costly than
neural networks.

For ease of illustration of our initial research, we concentrate here on determining

formation types from the interpretation of two logs, density and gamma ray log curves.



Log Curves

Logging provides an indirect, less expensive (than coring) way of gathering the
subsurface geological information and log data that will be used extensively in our risk
assessment procedure. The technique that we have developed. briefly described in the
following section, will allow users to use all types of log data. As such, it will

complement the method of importance ranking described earlier.
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Fig. 8. A portion of a density curve.
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Fig. 9. A portion of a gamma rav curve.

Figure 8 is a portion of a density log curve and Fig. 9 is a portion of a gamma ray
curve. Suppose we wish to interpret the curves to determine formation types. Typical
densities in gram/cm’ of common pure rocks are given in Table IV. This table will be
used as the basis for interpreting the density log curve. Typical relative strengths of
camma ray for the rocks, normalized to the range of [0, 10], are also given in Table IV.

This will be the basis to interpret the gamma ray log curve.



Table IV. Densities and gamma ray strengths of pure
rocks

Density | Gamma Ray
Rock Type afem’) (relative)
Dolomite 2.83-2.87 2-4
Limestone 251 2—4
Sandstone 2.65 &7
Shale 23-27 =7
Gypsum 223 2-7
Salt 2.08 1-3

An actual formation in a reservoir, however, may consist of one or more pure rocks;
that is, the formation is a mixture of various rocks. Therefore, the density value at a
certain depth on the density log curve may not necessarily be equal to any density values
given in Table IV. A similar phenomenon occurs with the gamma ray log curve. This is
one source of uncertainty in the interpretation of the log curves.

In addition to the uncertainty that resulted from the presence of different rocks in a
formation, another uncertainty exists in the interpretation of the log curves. It can be seen
from Table IV that density, even for some pure rocks such as dolomite and shale, is not a
unique value; and that the density of gypsum falls right in the density range of shale. The
situation is even worse for gamma ray values: for each rock listed in the table, its gamma
ray value is not unique but falls in a range; and the ranges of different rocks overlap.

How do we deal with this difficulty in log curve analysis?

Fuzzy Logic-Based Interpretation

Based on the knowledge of experts, we can formulate a “decision credibility
matrix,” containing pairs of weights (of credibility) that indicate the degree of plausibility

of inferred formation types from analyzing the density log curve and the gamma ray log



curve. Table V, the decision credibility matrix for our example, is a sort of “rule base”
that is obtained after an investigation of the rules used by a human expert. For simplicity,

we will consider only the rocks listed in Table IV.

Table V. Rule base for interpretation of the log curves

Density Log | Dolomite | Limestone | Sandstone | Shale Gypsum Salt
Gamma Ray
Log
Dolomite X DL(1.0) DL(1.0) GR(1.0) DL(1.0) DL{1.0)
Limestone DL{1.0) X DL(1.0) GR(1.0) DL{1.0) DL{1.0)
Sandstone GR(0.3) GR(0.8) GR(0.9) GR(0.6) GR(0.6)
DL{0.7) | DL(0.2) X DL(0.1) | DL{0.4) DL{0.4)
Shale GR(0.7) | GR(1.0) | GR(0.9) GR(0.7) | GR(0.7)
DL(0.3) DL(0.1) X DL(0.3) | DL(0.3)
Gypsum DL{1.0) | DL{1.0) | GR(1.0) | GR(l1.0) X DL{1.0)
Salt DL{1.0) GR(0.1) GR(1.0) GR(0.8) DL(1.0)
DL(0.9) DL(0.2) X

In Table V, DL denotes the density log curve and GR denotes the gamma ray log
curve. Figures within parentheses next to DL or GR in the table denote the degrees of
credibility of the corresponding conclusion. For instance, DL(0.7) means that a weight of
(0.7 is given to the conclusion arrived at from the density log curve; while GR(0.3) means
that a weight of 0.3 is given to the conclusion reached from the gamma ray log curve. In
other words, DL(0.7) means that the likelihood that “the actual formation type is identical
to that interpreted from the density log curve™ is 70%; similarly, GR(0.3) means that the
likelihood “the formation type is identical to the result interpreted from the density log
curve” is 30%. A zero weight for either DL or GR is omitted: and X's in the table mean
that results inferred from the two log curves are identical, that is, both DL = 1.0 and GR

=1.0. Therefore, the result inferred from either log curve is correct.




Two groups of fuzzy sets are defined for the density log curve and the gamma ray
log curve, based on the data given in Table IV and the opinion of an expert. One group of
fuzzy sets for each of the six rocks, according to each of the two log curves is shown in
Figs. 10 and 11, respectively. In Fig, 10, the range of density values for each of the six
variables 15 symmetrically extended 0.1 on both sides of the range. Thus, we have the

fuzzy set below for salt, where d is a density value.

10(d —1.98) ifd =[1.98,2.08)
Dsa.l (d)=<10(2.18—-d) ifd =[2.08.2.18]
0 otherwise

Similarly, we define density-based fuzzy sets for the other five variables: gypsum,
shale, sandstone, limestone and dolomiite.

Likewise, the range of values of relative gamma ray strength values for each of the
six variables is symmetrically extended by 1.0 on each side of the range. Thus, we have
the fuzzy set definition below for salt in terms of gamma ray strength, g. Similarly, we
define fuzzy sets for the other five variables: gypsum, shale sandstone, limestone and

dolomite.

Similarly, samma ray strength fuzzy sets for the other five variables are defined.
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Fig. 10. Fuzzy sets for densities of rocks.
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Fig. 11. Fuzzy sets for gamma ray strengths of rocks.
From the above two groups of fuzzy sets defining the densities and gamma ray
strengths of the six rock types, and given a density 4 and a gamma ray strength g, we
obtain two vectors giving the membership grades in the six rock types, according to,

respectively, density and gamma ray strength:



Did) =< Dlif:f].Dz [d]l.D.j (d), D-'i ['d}.DS {d}.Dﬁidj >,

G(g)=<G(£).G,(8).G5(9),G, (£).G5(8).G 8)>

Equivalently, D(d) may be viewed as representing the following fuzzy set:
DNd) =/ dolomite + D-(d) / limestone + Dsid) / sandstone
+ Dasld) / shale + Ds(d) / gypsum + Dg(d) / salt
Given a specific density reading d from the density log, the meaning of D(d) is that

d points to dolomite with degree of D\ (d), d points to limestone with degree of Da(d), etc.

Fuzzy Inference Method

Our objective is to apply a fuzzy logic-based reasoning method to determine
formation types from the log curves. When human experts interpret log curves, they often

face two problems:

A. How to reconcile the multiple conclusions that may be inferred from a single log

CUurve,

B. How to determine the formation type if the results inferred from the density log

curve and the gamma ray curve differ.

Here we propose an inference method for this problem based on the decision
credibility matrix, as given in Table V. (It is noted that our Table V. is based on the
knowledge of a single expert and needs to be modified to reflect the collective opinion of
a group of experts for better interpretation results)

The item GR(0.8)/DL{0.2) at row Salt and column Shale in the table, for example,

would be interpreted as
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If density determines it is shale and gamma ray determines it is salt

Then  the degree of credibility of shale is  and  the degree of credibility of salt is
02 0.8.

From Table V, we can extract two matrices, the density possibility matrix and the gamma

ray possibility matrix, given below:

(DL {1,1) - DL(16) ] (GROLL) - GR(LE) |
BEGE B GR(i. j)
| DL(6,1) -+ DL(6,6) | (GR(6I) - GR(6,6)

The inference method we adopt consists of three steps. The first step is to calculate
the two vectors D(d) and G(g) for density d and gamma ray g, respectively, from the two
given log curves. These two vectors of membership grades in different rock types are
evaluated from the corresponding group of fuzzy sets, as described earlier. In the second
step, the rules in Table V are “fired”, and we achieve two groups of fuzzy sets for rock

type represented by the following two equations:

6
RD(i)= Y DjDLG,j) fori=1,-6
=i
6
RG(j)= % GIGR(i, j) forj=1,---,6
=
Where Dj is the jth component of D, and Gi is the ith component of G. RD(i) the ith
(vector) fuzzy set for rock type derived from the evidence of density, and RG{(;) is the

Jjth (vector) fuzzy set for rock type derived from the evidence of gamma ray.
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The final step gives the conclusion, FT, for rock type, which is calculated using the
formula:

6 6
FT= 2RD()+ 1RG())
= f:

The FT is somewhat similar to the scaled fuzzy set in fuzzy logic controllers: it
indicates the formation types in the reservoir, i.e., the different types of rocks that exist in
a formation and the likelihood of each'’s presence. Thus, FT gives the interpretation we

seek for the formation types.

Technology Transfer
During the first quarter the REACT group homepage was revamped to include the
Fuzzy Expert Exploration Tool proposal. The WWW address for this proposal is

nttp://baervan.nmt.edu/REACT/reacthomepage htm, and it can also be accessed through

the PRRC homepage at http://baervan.nmt.cdu/.

A paper'® was presented on the application of computational intelligence to log
analysis at the SPE 1999 Rocky Mountain Regional Meeting in Gillette Wyoming,

A presentation'' concerning the application of new seismic attribute analysis
technology to a Brushy Canyon pool was made at the NPTO/FETC 1999 OQil & Gas
Conference.

Future

(Greology

Basically, the more wells that are included in the database, the better it will be.
Sometime toward the end of the summer, correlated wells will be used to make additional

cross-sections throughout the basin as an additional means of QA/QC.



Production

Digital data from 1970 to 1999 will be inciuded in the Access database. The
database will be queried to produce field production profiles of oil, water, and gas as well
as their derivatives GOR and WOR.

Ultimate Delaware zone production will be estimated and a Delaware Hubbert

curve will be developed.

Computational Intelligence
We will construct a shell for the Microsoft Access database in which all data will
be entered for computer/digital analysis including neural network analysis. A decision on

the expert system shell will be made by the fourth quarter.

Seismic

Current research using seismic attributes is exploring the possibility of generating
depth maps using seismic attributes and computational intelligence. Most depth maps are
made using wells as control points, and interpolating between wells and extrapolating
beyond areas with well control. If a function to compute depth using seismic attributes at
Nash Draw can be obtained, attributes along the major basin transecting 2D lines may
also be calculated accurately. These “depth” lines will provide support for the geologic

maps interpolation schemes that predict depth away from well bores.



Technology Transfer

An initial consortium meeting is tentatively scheduled for September. A paper'”
concerning the application of computational intelligence to Brushy Canyon zone 3D
seismic attributes has been accepted and prepared for the SPE 1999 Annual Fall Meeting

in Houston Texas.

Assessment of the prospects for future progress

Data assembly is progressing on schedule during the early part of the project;
however, it appears that the number of public domain 2D lines will be restricted. B vy the
end of the second quarter all the graduate students should be employed on the project and
development of the fuzzy rules should commence. Fuzzy rule development will include
interviews with explorationist who have discovered Brushy Canyon pools,

Successful development of computational intelligence tools for log interpretation
will speed populating the database. In a similar manner, research into correlating seismic
attributes to formation velocity variations, resulting in better depth maps, should speed
integration of disparate seismic information by the fifth quarter.

An initial version of Predicr should be available for consortium members during
third quarter. Once the FEE Tool database is sufficient to justify organization of the
Consortium, a conference will be held. The first meeting is tentatively scheduled for the

project’s forth quarter.
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